Revision Questions (Arrsweks)
(1) d
(2) b $\quad n=\frac{m}{m m}=\frac{17}{11}=1$ mole $\quad c=\frac{n}{v}=\frac{1}{12}=0.832$
(3) No: 1st solution, conce $=1.0 \mathrm{M}$, 2nd solutevin is lerwer as adding solurte to 1 lita of solvent would mereace the volume to >1 itin, thuss reducing come. $\left(c=\frac{h}{v}\right)$
(4) $2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~A}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$
(5) $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl}^{\circ} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { Sg } \quad{ }_{l}^{n=\frac{5}{14.1}} \\
& n=0.0675 \rightarrow n_{H C 1}=2 \times n=0.135
\end{aligned}
$$

(6) (b) first two zoro are not sig as they are place setters
(7) (a) 16

$$
\mathrm{PECl}_{4}+\frac{5 \times e F_{2}}{5} \rightarrow \mathrm{PtF}_{6}+4 \mathrm{HCl}+5 \times c
$$

(8) (b) 12

$$
\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{RbOH} \rightarrow 2 \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{Rb}_{2} \mathrm{SO}_{4}
$$

(9) (d) 7

$$
2 \mathrm{NH}_{3}+3 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

(10) (e) 3 moles of H_{2} would produce 2 moles of NH_{3}, or 34 g not 17.
(11.) $\left.\quad \begin{array}{l}8 \mathrm{CH}_{3} \mathrm{OH}+4 \mathrm{MnO}_{4}^{-} \rightarrow 8 \mathrm{H}^{+} \rightarrow \not 8 \mathrm{HCOOH}+4 \mathrm{MnO}_{2}\end{array}\right]$

Note equation is Nor balanced correctly, but has coefficients so aosince error our examiners part. In exam ace the equation as written (even though it is wrong)

$$
\begin{aligned}
& 3 \mathrm{CH}_{3} \mathrm{OH}+4 \mathrm{MnO}_{4}^{-} \rightarrow 3 \mathrm{HCOOH}+4 \mathrm{MnO}_{2} \\
& 12 g \\
& \begin{array}{lrl}
n=\frac{12}{32} & & m=n \times m u=0.375 \times 46 \\
& =17.25 g
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (12i) } \frac{\mathrm{O}_{2}}{50 \mathrm{~g}}+\frac{2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}}{75 \mathrm{~g}} \rightarrow 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO} \\
& \left|n=\frac{50}{32} \quad\right| n=\frac{75}{62} \\
& n_{\mathrm{O}_{2}}=1.56 \quad n_{\left(u_{3}\right)_{2},}=1.21
\end{aligned}
$$

$$
\begin{aligned}
& n_{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}}=\frac{2}{2} \times n\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}=1 \times 1.21 \\
& =1.21 \\
& \text { mass of }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{2}=n \times \mathrm{MM} \\
& =1.21 \times 78 \mathrm{~g} \\
& =94.4 \mathrm{~g}
\end{aligned}
$$

(13)

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \\
& \text { mass }=100.8 \mathrm{~g} \quad 51.5 \mathrm{~g} \\
& m=n \times M M \\
& n=\frac{51.5}{46} \\
& n_{C_{6} H_{12} \mathrm{O}}=0.56 \quad \frac{1}{2}=\frac{1}{2} \times n_{\mathrm{C}_{2}+\mathrm{OH}} \quad n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=1.12
\end{aligned}
$$

(14) (d) limiting reagent limits the progress of the reaction ley being used up five ,t, or in other words "consumed completty"

